Modeling a System for Decision Support in Snow Avalanche Warning Using Balanced Random Forest and Weighted Random Forest

Sibylle Möhle^{1,2}, Michael Bründl², and Christoph Beierle¹

Dept. of Computer Science, University of Hagen, Germany smoehle@acm.org, beierle@fernuni-hagen.de
WSL Institute for Snow and Avalanche Research SLF, Switzerland bruendl@slf.ch

Snow avalanches endanger traffic infrastructure

Photograph: M. Bründl (SLF)

Photograph: M. Laternser (SLF archives)

Factors influencing the formation of snow avalanches

- Precipitation
 - New snow
 - Rain
- Wind
 - Wind speed
 - Wind direction
- Solar radiation
- Air temperature

Photograph: D. Bommeli (SLF observer)

Avalanche hazard assessment

- Analyze meteorological variables and snowpack properties
- Compare with similar situations observed in the past
- Experience
- Intuition

Related work

- Forecasting large and infrequent snow avalanches using classification and regression trees
- Forecasting snow avalanches in coastal Alaska using classification trees
- Predicting wet-snow avalanches using classification trees and Random Forests

Contributions of our paper

- We developed a feasible decision support system for snow avalanche warning.
- 2 We investigated the suitability of Random Forests and variants thereof.
- 3 We identified quality measures for assessing the obtained models.

Avalanche hazard assessment in the region considered

Data

- Meteorological variables
 - Weather data
 - Snow data
- Avalanche information
 - Date
 - Avalanche characteristics

Method

- NXD2000 (nearest neighbours method)
 - Determine 10 most similar situations
 - Consider avalanche activity for a period of 3 days
- Experience and intuition

The region considered

 $\label{eq:map:map:map:map:map:map:map} \mbox{Map: swisstopo,} \\ \mbox{image editing: A. Stoffel (SLF), S. Moehle} \\$

Meteorological variables are measured daily

ELM

- Minimum and maximum temperature in the last 24 hours
- Actual wind speed and direction
- Actual sky cover
- Precipitation in the last 24 hours

Risiboden

- New snow fallen in the last 24 hours
- Snow depth

Derived meteorological variables for ELM

	Abbreviation	Unit	Range
Temperature	e_tmin_0, e_tmin_1 e_tmax_0, e_tmax_1		[-251, 157] [-178, 240]
Wind	e_dw_0, e_dw_1 e_vw_0, e_vw_1	[kn]	{0, 10,, 350} [0, 206]
Sky cover	e_clouds_0		{0, 12,, 96}
Precipitation	e_prec_0, e_prec_1	[1/10 mm]	[0, 989]

Derived meteorological variables for Risiboden

	Abbreviation	Unit	Range
New snow	r_hn24_0 r_hn24_prev	[cm]	[0, 550] [0, 575]
Snow depth	r_hs_0		[0, 432]

Available data

- Period 01.01.1972 30.04.2013
- Winter season: 1st November to 30th April
- 6943 data records
 - 6889 non-avalanche days
 - 53 avalanche days
- Positive-negative ratio: $\approx 1:130$

Avalanche forecasting as a classification problem

		predicted		
		non-avalanche	avalanche	
observed	non-avalanche	TN	FP	
	avalanche	FN	TP	

TN: True negative forecastsFN: False negative forecastsFP: False positive forecastsTP: True positive forecasts

Investigating established quality measures

Sensitivity:
$$POD = \frac{TP}{TP + FN}$$

Specificity:
$$PON = \frac{TN}{TN + FP}$$

False alarm ratio:
$$FAR = \frac{FP}{FP + TP}$$

Results: Additional measures for forecast assessment

Positive predictive value:
$$PPV = \frac{TP}{TP + FP} = 1 - FAR$$

Negative predictive value:
$$NPV = \frac{TN}{TN + FN}$$

Random Forest

- Ensemble learning method for classification (and regression)
- Deals with unknown variable dependencies and distribution
- Handles discrete and continuous variables

Reviewing the Random Forest algorithm

Creating a forest of size ntree

- Draw a bootstrap sample
- Construct a decision tree without pruning
- 3 Add the tree to the forest
- 4 Repeat 1. to 3. ntree 1 times

Classifying a data record

- 1 Put the data record down the random forest
- 2 Assign class with majority decision

Forecasting rare events

Sampling

- Undersampling negative class (non-avalanche days)
- Oversampling positive class (avalanche days)

Cost-sensitive learning

- Consider costs for measures taken
- Different forecast types have different costs
- Assign different weights to positive and negative class

Forecasting rare events with Random Forest

Balanced Random Forest (BRF)

 Equally-sized bootstrap samples for avalanche and non-avalanche days

Weighted Random Forest (WRF)

Assign a higher weight to the minority class

Defining training and test data sets

Training data set

- 01.01.1972 30.04.2002
- 560 non-avalanche days
- 41 avalanche days

Test data set

- 01.11.2002 30.04.2013
- 1572 non-avalanche days
- 12 avalanche days

Results: Two feasible types of models

	BRF	BRF	WRF
Identified avalanche days	6	5	5
Missed avalanche days	6	7	7
False alarms	76	55	56
Identified non-avalanche days	1496	1517	1516
Sensitivity	50%	41.7%	41.7%
Specificity	95.2%	96.5%	96.4%
Positive predictive value	7.3%	8.3%	8.2%
Negative predictive value	99.6%	99.5%	99.5%

Discussion

- The developed models are feasible as a decision support in avalanche forecasting and equivalent from an operational view
- 2 BRF and WRF are suitable for modeling a system for decision support in avalanche warning
- 3 PPV and NPV are appropriate measures from an operational point of view

Discussion

The method is suitable for classification problems

- in which rare events or classes are highly unbalanced
- in which dependencies between variables are non-linear and unknown
- in wich the distribution of the variables is unknown

Further work

- Define additional meaningful variables
 - describing the weather situation
 - describing trends
 - containing region-specific expert knowledge
- Apply variable selection
- Discriminate between avalanche paths

Thank you for your attention - questions are welcome

Photograph: M. Bründl (SLF)