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Formal Concept Analysis — What is it?

• A mathematical theory, invented ≈ 30 years ago,
• based on algebra (lattices) and ordered sets.
• With solid methodology,
• many applications,
• expressive graphics and
• powerful algorithms.

FCA it is not a “method” designed for a certain purpose,
but a broad theory with many different applications.

There are all kinds of variants (such as triadic, fuzzy,
rough, logical, nonmonotonic, probabilistic FCA.)
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Books on Formal Concept Analysis

. . .



Differences to other methods

• FCA does not rely on metric data.
• Instead, it is an algebraic theory based on ordered

sets (“polyhierachic structures”).
• It has a fundamental data type (“formal context”)

which is of relational nature.
• It unfolds data rather than simplifying it. It emphasises

meaningfulness and reliability of the analysis.
• It has different goals and purposes.
• It uses order diagrams for communication.

Please be brave: There will be no similarities, no distance
functions and no trees in this lecture!
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An order diagram: Operating the beamer

beamer on boot

focus plug in remote
connect

launch presentation



From a treatment of Anorexia nervosa
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Myself × × × × × × × × × ×
My Ideal × × × × × × × ×
Father × × × × × × × × × × × ×
Mother × × × × × × × × × × ×
Sister × × × × × × × × × ×
Brother-in-law × × × × × × ×



A biplot of the interview data
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A concept lattice of Anorexia data
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Mathematical definitions

A formal context (G,M, I) consists of two sets G and M
(called “objects” and “attributes”) together with a relation
I ⊆ G ×M (“has”).

A formal concept of (G,M, I) is a pair (A,B) of sets
A ⊆ G and B ⊆ M such that
• B consists of precisely those attributes that all objects

in A share, and
• A consists of precisely those objects which have all

attributes from B.

(A1,B1) is a subconcept of (A2,B2) iff A1 ⊆ A2.

With this order, the formal concepts of any formal context
form a complete lattice, the concept lattice.
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Allergenes in McDonald’s Burgers & Co.
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Enamels in the palace of Nebuchadnezzar II
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Properties of lattices

g ↗ m,g ↙ n⇒ g↗↙ m semi convexg ↙ m,h↗ m⇒ g↗↙ m

semimodularSD∧SD∨
dual

semimodular
meet-

distributive
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distributive

modularB

distributive
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Recommended serving temperatures
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Recommended serving temperatures of red
wines
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The divisor lattice of 200
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Semantic Mirror: English vs. Norwegian
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Fleas of shrews

(C. = Crocidura, N. = Neomys, S. = Sorex)
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Shrews of fleas
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Knowledge acquisition: Pairs of squares

common edge

common
segment

parallel common vertexdisjoint
overlap



A logical base of the example set

• common edge→ parallel, common vertex, common
segment

• common segment→ parallel
• parallel, common vertex, common segment→

common edge
• overlap, common vertex→ parallel, common

segment, common edge
• overlap, parallel, common segment→ common edge,

common vertex
• overlap, parallel, common vertex→ common

segment, common edge
• disjoint, common vertex→ ⊥
• disjoint, parallel, common segment→ ⊥
• disjoint, overlap→ ⊥



Two of the implications do not hold in general

• common edge→ parallel, common vertex, common
segment

• common segment→ parallel
• parallel, common vertex, common segment→

common edge
• overlap, common vertex→ parallel, common

segment, common edge
• overlap, parallel, common segment→ common edge,

common vertex
• overlap, parallel, common vertex→ common

segment, common edge
• disjoint, common vertex→ ⊥
• disjoint, parallel, common segment→ ⊥
• disjoint, overlap→ ⊥



Conterexamples for the two implications

• overlap, common vertex→ parallel, common
segment, common edge

• Counterexample:

• overlap, parallel, common segment→ common edge,
common vertex

• Counterexample:
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The general case
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Attribute Logic

The basic version of Attribute Exploration acquires the
logic of attribute implications, i.e., expressions

A→ B,

where A and B are sets of attributes.

The meaning of an implication A→ B is
every object which has all the attributes from A
also has all the attributes from B.

The Armstrong rules govern implication inference. A
theorem by Duquenne and Guigues provides a canonical
base for each implication theory.
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A simple method

The interactive Attribute Exploration algorithm finds the
canonical base by identifying in each step an undecided
implication, which then is presented to an “expert”, who
can confirm the implication as valid or reject it by giving a
counterexample.

The algorithm is very useful, but is it effective?
No, the complexity results are rather unpleasant, at least
the ones that we have so far. But even for small data sets
this method my yield nontrivial results.

Jump to lattices classification
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Replacing the expert

Peter Kestler in his 2013 PhD dissertation has
investigated the implicational logic of 70 simple groupoid
identities. In order to complete this classification, he had
to prove over 50 (simple) theorems confirming
implications, and he had to construct over 1400 examples
refuting implications. Many of these examples are infinite.
The resulting lattice has more than 20 000 elements.

Recently, Artem Revenko has repeated Kestler’s
investigation, but replaced the “expert” by a combination
of a theorem prover (Prover9) and an example generator
(Maze4). He could perform the complete exploration fully
automatic. It took some days of computer time rather than
years of manual computation.
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Generalisations

Thanks to its solid mathematical foundation, Attribute
Exploration could widely be generalised. The most
promising recent results were obtained by Franz Baader,
Felix Distel, Baris Sertkaya and, very recently, Daniel
Borchmann, who extended the exploration algorithm to
the Description Logic EL⊥.

Borchmann’s thesis entitled
Learning Terminological Knowledge with
High Confidence from Erroneous Data

develops methods for extracting “semantic” knowledge
from “real world” relational data.
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The ordinal scale

beamer on boot
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beamer × × × ×
boot × × ×
focus ×
connect × ×
remote × ×
presentation ×

(The concept lattice of this table is known as the
Dedekind-MacNeille completion of the ordered set.)



The contraordinal scale
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focus plug in
remote

connect

launch presentation

A pair (A,B) is a formal concept of the contraordinal scale
of (J,≤) if and only if

A is an order ideal, B is an order
filter, and A and B are complements of each other.
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Lattice of order ideals
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Linear extensions and maximal chains
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Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



Counting maximal chains
1

1 1

2 1 1

3 3 2 1

3 8 4 3

11 7 15

33 linear extensions



What’s next?

1 An introduction to Formal Concept Analysis

2 Formal concepts for knowledge acquisition

3 Mathematics: combinatorics of ordered sets

4 Formal concepts for skill analysis



Knowledge Spaces

The notion of a knowledge space was introduced by
J.C. Falmagne and J.P. Doingnon in the 1980es.
Knowledge spaces provide a simple formal model for
assessment and learning (mainly applied to the learning
of school mathematics).

Though simple, Knowledge Space Theory (KST) is
remarkably successful. Its commercial software has many
users, and is sometimes even used as a subsitute when
mathematics teachers are missing.

A short while ago Doignon and Falmagne have presented
a refinement of their approach, called Learning Spaces.
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Tasks

Doignon and Falmagne focus on the ability of mastering
tasks (solving problems, answering questions, . . . ).

So they fix a set of tasks, and observe how learners do or
do not master these tasks.

They allow for “lucky guesses
and careless errors”, but apart from that it is assumed that
a learner usually masters a task if he has the ability to
master it.

Some tasks are easier to master than others, and a
learner who fails for an easy task will lack the ability to
master more difficult ones. Or equivalently: a learner who
is able to solve a difficult problems is also able to solve all
problems which are easier.
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An ordered set of tasks

To have a toy example, assume that we consider six tasks
t1, t2,. . . ,t6, and assume that t1 is easier than t3, t4 and t6,
t2 is easier than t4 and t6, and that t4 and t5 are easier
than t6.

This can be represented as a diagram:

t1 t2

t3 t5
t4

t6

The admissible knowledge states that a learner can have
are precisely the order ideals (downsets) of this ordered
set. And the learning paths are precisely its linear
extensions.
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The set of all admissible knowledge states forms the
knowledge space (over the given set of tasks).

Typical applications of KST include
• determining the knowledge state of a learner

efficiently,
• finding the “outer fringe”, meaning the set of tasks

which a learner is ready to learn,
• design learning paths etc. from the given difficulty

order of the tasks.

There is extensive literature on these questions and
successful software (ALEKS).



Competences

Some researchers extend KST by asking why a learner is
able to master a task. To explain learner behaviour, they
introduce abstract competences.

In their approach (which is called Competence based
Knowledge Space Theory, CbKST) learner master a task
if and only if they hava a competence that enables them
to do so.



Formalisation

Define three formal contexts as follows:
• (L,Q,�), where L is the set of learners, Q is the set

of questions (or tasks), and

l � q :⇐⇒ learner l masters question q.

• (L, C, ◦), where C is the set of competences and

l ◦ C :⇐⇒ learner l has competence C.

• (C,Q, |=) where

C |= q :⇐⇒ competence C enables mastering question q.



Boolean factorisation

The model assumption

l � q ⇐⇒ ∃C ( l ◦ C and C |= q )

can be expressed in the form

(L,Q,�) = (L, C, ◦) · (C,Q, |=),

It is easy to see that this is just the same as writing
(L,Q,�) as a Boolean matrix product (L, C, ◦) · (C,Q, |=).

The problem of finding Boolean factorisations was studied
by many authors. Belohlavek and others have discovered
that it cooresponds to the problem of covering a formal
context by formal concepts.
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No math details, please!

OK, let us avoid the nitty-gritty part.

Finding abstract competences that explain observed
learner-question data turns out to be a mathematical
problem that can be solved by an algorithm, though not
efficiently.

This is somewhat disappointing for educational theory.
What can you do with abstract competences, which
mathematicians generate by magic tricks?

Fortunately, it is not that bad.
The factorisation is not unique. Unless you impose
additional restrictons, there will be very many possible
factorisations, and room enough for educational theory.
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Skills

But more interesting is that the approach can support
further theory.

Some authors assume that the competences themselves
are composed from simpler units, which they call skills. In
the simplest version, each competence is just a skill
combination.

Our theory then has to find Boolean factorisations that
can be interpretetd by the skill model.

This is very promising work in progress.



Skills

But more interesting is that the approach can support
further theory.

Some authors assume that the competences themselves
are composed from simpler units, which they call skills. In
the simplest version, each competence is just a skill
combination.

Our theory then has to find Boolean factorisations that
can be interpretetd by the skill model.

This is very promising work in progress.



Skills

But more interesting is that the approach can support
further theory.

Some authors assume that the competences themselves
are composed from simpler units, which they call skills. In
the simplest version, each competence is just a skill
combination.

Our theory then has to find Boolean factorisations that
can be interpretetd by the skill model.

This is very promising work in progress.



A concluding example
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Questions!
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