On Modeling Formalisms for Automated Planning

J. Vodrážka R. Barták

Faculty of Mathematics and Physics Charles University in Prague

AIMSA, 2014

・ロト ・ 一下・ ・ ヨト・

프 🕨 🗉 프

General model based approach to problem solving.

General model based approach to problem solving.

modeling formalism = interface

Real world example

Petrobras planning challenge

model: object classes, system state, operations problem: initial state, desired state solution: ordered set of actions

Academic approach

- PDDL (IPC)
- state = set of propositions (+ fluent values)
- changed by actions

PDDL operator sample

Engineering approach

- NDDL (Europa)
- timelines + intervals
- temporal constraints

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

PDDL

- predicate logic
- operators
- + clear model
- sequencing

NDDL

- timelines
- compatibility rules
- complex structures
- + expressivity

Key concepts:

State variables - representation of system state

・四・・ モー・ ・ ヨ・

- 2 Domain rules domain specific knowledge
- Operators state transition

Key concepts:

State variables - representation of system state

- Obmain rules domain specific knowledge
- Operators state transition

Key concepts:

- State variables representation of system state
- Obmain rules domain specific knowledge
- Operators state transition

How to model a ship?

state variable declarations

shipLoc(Ship):{Location}
shipFuel(Ship):{Number}
shipAvailCap(Ship):{Number}

< ロ > < 同 > < 三 > .

Domain specific knowledge

- numeric computation
- advanced check

fuelConsumption(L1,L2,Weight)

イロト イポト イヨト イヨト

æ

Domain rules

Domain specific knowledge

- numeric computation
- advanced check

Two types of expressions:

- conditional
- transitional

operator load cargo

<pre>loadCargo(C - Cargo; S - Ship; L - LogisticLoc;</pre>	
	X - Number; A - ShipState)
1	<pre>fsaCheck(load,A) = true</pre>
2	cargoWeight(C) <= X
3	shipLoc(S) = L
4	shipStatus(S): load -> A
5	<pre>shipAvailCap(S): X -> (X - cargoWeight(C))</pre>
6	cargoLoc(C): L -> S

Thank you.

